Introduction to Network &
Automotive Security

mOleCon 2025 Workshops

ISO/OSI model
TCP/IP model and protocols
Layer 2: Ethernet

Layer 3: Internet Protocol (IP)
Layer 4: UDP & TCP
Client-server model

ISO/OSI model

The Open Systems Interconnection (OSI) represents a
guideline for network protocol design.

Application
_ e Reference models for communication between
— different computers

Transport e |tis atheoretical model

e Uses a layered model (7 layers)

e Provides modularity and clear interfaces and allows
Data Link extensibility

e Actual communication is defined by various protocols

Network

Physical

ISO/OSI model

[Application] It provides the services to the user

_ It is responsible for the formatting of information (e.g., compression and encryption)
_ It is responsible for establishing, managing, and terminating sessions

r Transport It provides message delivery from process to process

i Network ‘ It is responsible for moving the packets form source to destination

i Data Link It combines bits into a structure of data and provides their error-free transfer

i Physical It provides a physical medium through which bits are transmitted

TCP/IP model

TCP/IP provides an alternative model used for the description of all network
communications.

e s a four-layer model

® is based on standard protocols that the Internet has developed:
o Transmission Control Protocol (TCP) which also implements the Transport layer of ISO/OSI
model
o Internet Protocol (IP) which also implements the Network layer of ISO/OSI model

TCP/IP model

.) 4)\ 4 N\ 7
[Application]
T O
U (2]
r Transport | L Transport ‘ TcP || uDpp
: Network | | Internet | i P ARP
[Datalink | f R 2
) Network Access Ethernet
Physical &) %

ISO/OSI TCPI/IP Standard protocols

Layer 2: Ethernet

Ethernet is a broadly deployed layer 2 protocol.
e Encapsulate data and transmit them in the form of frames
e Frames leverage the Media Access Control (MAC) addresses
o 48 bits represented as 6 hexadecimal couples separated by colon:
01:02:03:aa:bb:cc (first 3-bytes: the ID of the manufacturer)
o Every Ethernet device has a unique MAC address on its local network
o A Frame includes the MAC address of the destination interface on the
target system as well the MAC address of the source interface on the
sending system

Layer 3: Internet Protocol (IP)

The standard for routing packets across interconnected networks
Encapsulate data and pass that data in the form of packets
Every device in the network is assigned a numerical label called IP address

Two versions: IPv4 and IPv6
o |IPv6 is the “new” version that is being deployed to fulfill the need for more Internet addresses.
o |IPv4 currently still the most widely used

e Each packetincludes:

o The IP address of the source
o The IP address of the destination

Layer 3: IP(v4) addressing

e 32 bits

e Grouped 8 bits at a time (octet)

e FEach of the four octets is separated by a dot and represented in decimal
format (dotted decimal notation)

e In every network, two addresses are used for special purposes:

o Network address: is the first address in the network (all the host bits are O) and it is used for
identifying the network

o Broadcast address: is the last address in the network (all the host bits are 1). An IP packet
having the broadcast address as the destination address is sent to all nodes of the IP network

11000000 10101000 01100100 11001000
192 . 168 . 100 . 200

Layer 4: TCP & UDP

TCP and UDP are the most common Layer 4 protocols

e TCP first creates a connection before any message is sent, whereas UDP does
not

e While both do error checking by checksums, UDP won't recover from one. TCP
includes error recovery, thanks to acknowledgments

e TCP rearranges data packets in the specific order while UDP protocol has no
fixed order

e Since UDP has no connection establishment, no connection state, and small
packet header overhead is simpler and faster than TCP

e UDP is commonly used for applications that are “lossy” (can handle some
packet loss), such as streaming audio and video.

Layer 4: Ports

Layer 4 is in charge of the process-to-process communication. Transmitter and
receiver are identified using ports

e 16-bit unsigned integer (0-65535, O reserved)

o Well-known ports (0-1023)
o Registered ports (1024-49151)
o Ephemeral ports (49152-65535)

e The use of well-known and registered ports allows the requesting process to
easily locate the corresponding server application processes on other hosts
e Despite these agreements, any service can listen on any port

Client-server model

TCP/IP relies on the client-server model for enabling the process communication
between network nodes.

e |[tis arelationship in which one program (client) requests a service or resource

from another program (server).
e The client needs to know of the existence of and the address of the server.
e The server does not need to know the address of (or even the existence of)

the client prior to the connection being established.

Client-server model (example)

192.168.58.143 52662 (ephemeral) 130.251.1.19 443 (well-known) https:/ /...
Source IP Source Port Destination IP | Destination Port Data
Client * 443 |Server
request
192.168.58.143 130.251.1.19
response
52662 +— P

Data Destination Port | Destination IP Source Port Source IP

52662 (ephemeral) 192.168.58.143 443 (well-known) 130.251.1.19

e TCPDump

e Wireshark

Networking CTF challenges

In some CTF challenges, we are given a PCAP file.
Typically, solving these challenges requires analyzing the capture to find the flag by

® answering questions related to network traffic
e carving file from packet streams

TCPDump

CLI-based tool that allows the analysis and logging of all the packages that pass
through a network segment

e Allows the filtering of captured packets through filtering expression
e The traffic gets saved in the packet capture file format with extension: .pcap

Wireshark

Wireshark is a tool to capture data from a network (sniffer) and to analyse them

e Analysis can be performed in real-time or on previously recorded traffic files,

through, e.g., packet capture or PCAP

e Packets represent generic chunks of data and, depending on the considered
level, can be interpreted as frames, datagram, or segment

e Available for UNIX and Windows: https://www.wireshark.org/

Wireshark GUI: filter toolbar

The filter toolbar lets you quickly

=== edit and apply display filters

e Manage or select saved
filters |

® Reset the current display
filter and clear the edit area

e Apply the current value in
the edit area as the new
display filter E3

Wireshark GUI: packets list

- 1 0000000000
20.013390774
3 0.013439

5 0.913732949
6 0.030099573
7 0.030145338
8 0.032128670
9 0.032168126
10 0.032215234
11 0.032225211
12 0.0934177670
13 0.034210810
14 8.0846559953
15 0.046594058
16 0.0947053560
17 0.047071590

ke 8 143
130.251.1.19

192.168.58.143
130.251.1.19

130.251.1.19
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19
192,168.58.143

‘ a A
e

130.251.1.19
192.168.58.143

192.168.58.143
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19
192.168.58.143
130.251.1.19

74 52662 + 80 [SYN] Seq=0 Hin-!Sd
60 80 » 52662 [SYN, ACK] Seq=0 A

60 80 + 52662 (mq Seq=1 Ack=10;
4434 80 + 52662 [PSH, ACK] Seq=1 A.
54 52662 + 80 [ACK] Seq=107 Ack
1514 80 » 52662 [PSH, ACK] Seq
54 52662 + 80 [ACK] Seq=107 m:.}_
5894 80 > 52662 [PSH, ACK] |
5452662 » 80 [ACK] Seq=107 Ack="
2974 80 + 52662 [PSH, ACK] seq.nq
54 52662 + 80 [ACK] Seq=107 Ack=:
1514 80 + 52662 [PSH, ACK] Seq=146(
54 52662 + 80 [ACK] Seq=107 Ack.1
2974 80 + 52662 [PSH, ACK] Seq=1
54 52662 + 80 [ACK] Seq=107 Ack=

ANNTA OA . E€IEEA INCHE AFEY Cam A —

The packets list pane displays a
~ summary of each captured
packet

e Eachline in the packet list
corresponds to one packet
in the capture file

e Columns provide an
overview of the packet

® You can click the column
headings to sort by that
value

Wireshark GUI: packet details

> Frame 4: 160 bytes on wire (1280 bits), 160 bytes captured (1280 bits) on interface ens33, id @

> Ethernet II, Src: VMware_3f:4a:bb (00:0c:29:3f:4a:bb), Dst: VMware_fb:3d:75 (80:50:56:fb:3d:75)
> Internet Protocol Version 4, Src: 192.168.58.143, Dst: 130.251.1.19
> Transmission Control Protocol, Src Port: 52662, Dst Port: 80, Seq: 1, Ack: 1, Len: 106

The packet details pane shows
the current packet (selected in

the packet list pane) in a more

detailed form

In particular, it shows the
protocols and fields of the packet
in a tree, which can be expanded
and collapsed

Display filters: filtering packets

Wireshark provides a display filter language that enables you to precisely control
which packets are displayed

They can be used to check for

e the presence of a protocol or field
e the value of a field
e compare two fields to each other

These comparisons can be combined with logical operators and parentheses into
complex expressions

Useful filters

¢ Iip.src / ip.dst =respectively filter by source and destination address
To filter by protocol just use the name that appears in the protocol column, all

in lowercase

protocol.port = filter by port on the specified protocol

frame contains “string” =filter all the packet that contain “string”
frame. len = filter by packet length (size), in bytes

Useful documentation links:

o https://wikiwireshark.org/DisplayFilters
o https://www.wireshark.org/docs/man-pages/wireshark-filter

Follow streams

Follow stream provides a
different view on network traffic
Instead of individual packets,
one can see data flowing
between client and server

It can be enabled using the
context menu in the packet list:

- 79.025432
8 9.025433
9 9.025434

10 9.025434
11 9.025435
12 9.025435
13 9.025435
14 9.025532
15 9.025860
16 9.037860
17 9.037862
18 9.037863
19 9.037864
20 9.037864
21 9.037865
22 9.037866

172.163.7.54

72.163.7.54
72.163.7.54
72.163.7.54
72.163.7.54
72.163.7.54
72.163.7.54
192.168.1.135
72.163.7.54
72.163.7.54
72.163.7.54
72.163.7.
72.163.7.
72.163.7.
72.163.7.
72.163.7.

NN NN
LLXLY

Frame 7: 97 bytes on wire (776 bits), 97 bytes cap
Fthernat TT Srr+ Amter 22-a1:5Q (BA-AA-3-2D-a1-C

a display filter which selects all
the packets in the current
stream is applied

192.168.1 13% €10
102.168. MerUnmark Packet
192.168. Ignore/Unignore Packet
192.168. Set/Unset Time Reference
192.168. Time Shift...

192.168. Packet Comment...
192.168.

72.163.7 Edit Resolved Name
192.168. Apply as Filter
192.168. Prepare a Filter
192.168. Conversation Filter

192 266 Colorize Conversation
192.168. scre

192.168.

192.168.

192.168. Copy

Protocol Preferences
Narnda Ac

07 Racnnnca-
Ctri+M
Ctrl+D
Ctrl+T
Ctrl+Shift+T
Ctrl+Alt+C

vy v v v v

220-\tCisco Syste

20-
20- \t\t\t\t\t
20-\tPhone: +1.8
20-
20- Local time
20-
[ACK] Seq=1 Ack=
20-\tThis system
20-\t- FILES.CI
20-
220-\tPlease read
20- \tWARNING! -

02 A\ +NDACCLNDN AR
TCP Stream
UDP Stream
SSL Stream

HTTP Stream

Follow streams (example)

e Telnetis a type of client-server protocol
that can be used to open a command line
on a remote host

e Blue is the data from the server to the
client (e.g., the login: prompt)

e Red is the data from the client to the
server (e.g., the user password is sent by
the client and is not echoed by the server)

e Non-printable characters are replaced by
dots.

............. | FPLPPL RS R A R PO e A S SSIO, PI AP SRR SO IS
........................ T A s, s e A e e el SRR SR esa.. .9600,9600....8%.bam.zing.org:
9.0...."..DISPLAY.bam.zing.org:0.0......xterm-color...co.vuuusnns Locesioecasnsesn Sessasanesnne

OpenBSD/i386 (oof) (ttypl)

login: .."..esaesen “ffaakkee

Password:user

Last login: Thu Dec 2 21:32:59 on ttypl from bam.zing.org
Warning: no Kerberos tickets issued.
OpenBSD 2.6-beta (OOF) #4: Tue Oct 12 20:42:32 CDT 1999

Welcome to OpenBSD: The proactively secure Unix-like operating system.

Please use the sendbug(l) utility to report bugs in the system.
Before reporting a bug, please try to reproduce it with the latest
version of the code. With bug reports, please try to ensure that
enough information to reproduce the problem is enclosed, and if a
known fix for it exists, include that as well.

$ llss
$ 1llss --aa

. o .cshrc .login .mailrc .profile .rhosts
$ //ssbbiinn//ppiinngg wwwwww. .yyaahhoooo. .ccoomm

PING www.yahoo.com (204.71.200.74): 56 data bytes

64 bytes from 204.71.200.74: icmp_seq=0 ttl=239 time=73.569 ms
64 bytes from 204.71.200.74: icmp_seq=1 ttl=239 time=71.099 ms
64 bytes from 204.71.200.74: icmp_seq=2 ttl=239 time=68.728 ms
64 bytes from 204.71.200.74: icmp_seq=3 ttl=239 time=73.122 ms
64 bytes from 204.71.200.74: icmp_seq=4 ttl=239 time=71.276 ms
64 bytes from 204.71.200.74: icmp_seq=5 ttl=239 time=75.831 ms
64 bytes from 204.71.200.74: icmp_seq=6 ttl=239 time=70.101 ms
64 bytes from 204.71.200.74: icmp_seq=7 ttl=239 time=74.528 ms
64 bytes from 204.71.200.74: icmp_seq=9 ttl=239 time=74.514 ms
64 bytes from 204.71.200.74: icmp_seq=10 ttl=239 time=75.188 ms
64 bytes from 204.71.200.74: icmp_seq=11 ttl=239 time=72.925 ms

.=== www.yahoo.com ping statistics ---

13 packets transmitted, 11 packets received, 15% packet loss
round-trip min/avg/max = 68.728/72.807/75.831 ms

$ eexxiitt

Export objects (example)

e File » Export Objects

e This feature scans through (some)
protocol streams and takes
reassembled objects (e.g., HTML
docs, images, executables)

e These files can be exported and
saved to disk

File Edit View Go Capture Analyze Statistics Telephony
Open Ctrl+0 *E= =
Open Recent »

Merge... Destinatic
Import from Hex Dump... 178.62
& cow g
Save Ctrl+S 178.62
Save As.. Ctrl+Shift+S Lot i
192.16!

File Set Y 192.16!
Export Specified Packets... 1;8' 6;
Export Packet Dissections » igg 56'
Export Packet Bytes... Ctrl+H 192' 1 6:
Export PDUs to File... 195 16
Export SSL Session Keys...
Print. Ctrl+P
Quit Ctrl+Q

17 0.147466 178.62.203.14

18 0.147504 192.168.1.135

Challenge time

® T[shark

e Pyshark
e Scapy

Tshark

e TShark is a terminal oriented version of Wireshark

e Designed for capturing and displaying packets

e |t supports the same options as Wireshark

Pyshark

e [t’'s a Tshark wrapper for python

e Useful to automate operations on large numbers of packets

e After loading the pcap it exposes a list containing all the packets parsed from
the capture

e Packets are divided in layers. You need to access the correct layer before
querying the wanted field

o packet.ip.dst = access the IP layer and selects the destination IP field
0 packet.tcp.payload = access the TCP layer and selects the payload field

e To check if alayerisin a packet the layer name can beused: if ‘IP’ in
packet

e To get all available fields, the attribute packet.layer.field names can be
used (eg: packet.ip.field names)

Pyshark: example

Simple script to print all the TCP packets payloads from a pcap file

import pyshark

cap = pyshark.FileCapture ('/path/to/pcap/file.pcap')

for packet in cap:

if "tcp' packet:
try:
print (packet.tcp.payload.binary value)
except:

continue

Scapy

e Scapy is a powerful interactive packet manipulation library written in
Python.

e Itis able to forge or decode packets of a wide number of protocols,

send them on the wire, capture them, match requests and replies, and
much more.

Challenge time

General overview
Protocol overview

Tools

Attacks

Architecture of a modern

vehicle

General overview

e Controller Area Network (CAN) is a broadcast digital serial bus
designed to operate at speeds from 10kbit/s to IMbit/s

e [t was introduced by Bosch in the early 1980s for automotive
applications

e Flexible: nodes can easily be added or removed.

e |ower cost compared to ethernet

Protocol overview

e CAN protocol uses a broadcast transmission , every node (i.e., ECU) receives
every message

e CAN is a message based protocol . A message is organized in a structure
called frame

e The CAN frames do not contain addresses of either the transmitting node or
any of the intended receiving node(s). An arbitration ID that is unique across
the network labels the frame

e Depending on the arbitration ID of that transmitted frame, each CAN node
decides whether to accept the frame, or not

e If multiple nodes try to transmit a message at the same time, the node with the
highest priority (lowest arbitration ID) automatically gets bus access

Protocol overview

Standard CAN frame

/L
”
a 11 6 0-64 16 2 7
JL
[4
SOF ID RTR Control Data CRC ACK EOF
Start of Standzrd Remote Trans- Cyclic Redundancy Acknow- End of
Check ledgement Frame

Frame dentifier mission Request

Tools

e candump & isotpdump:
o tools to view and log CAN packets over a can bus
e cansend & cangen:
o tools to generate and send random and/or arbitrary can packets over a CAN bus
® caring caribou&gallia:
o tools to test the security of a CAN bus and connected devices
® Scapy & python-can:
o libraries to provide CAN bus support to python

Attack: DOS

Attack: DOS

Execution of the Attack:

The attacker sends rapid high-priority messages after gaining physical or remote access to the CAN bus.

Attack: DOS

Execution of the Attack:

The attacker sends rapid high-priority messages after gaining physical or remote access to the CAN bus.

Impact on the System:

Critical messages are blocked, disrupting essential vehicle functions like brakes or engine control, leading
to unsafe operation.

Attack: Spoofing/replay

Attack: Spoofing/replay

Execution of the Attack:

The attacker intercepts valid CAN messages, then modifies or replays them to manipulate vehicle
behavior, often requiring physical or remote access to the CAN bus.

Attack: Spoofing/replay

Execution of the Attack:

The attacker intercepts valid CAN messages, then modifies or replays them to manipulate vehicle
behavior, often requiring physical or remote access to the CAN bus.

Impact on the System:

Maliciously injected or replayed messages can trigger unintended actions, such as unlocking doors,
disabling safety features, or altering vehicle performance.

Architecture of a modern vehicle

;’;T ‘m" Bluetooth™

1=F1

Distance control ‘;ﬂ ”“
CAN ”

Instrument

7 ¢ CAN Infotainment
Diagnostics CAN SysKAeongT
/
A
A
1
g
.
/
LIN / A un K /
FTTTITea 222277 L
Aun /

e General Overview

e Protocol Overview
e Attacks

General overview

e Unified Diagnostic Services (UDS) is a communication protocol used in
automotive Electronic Control Units (ECUs) to enable diagnostics,
firmware updates, routine testing and more

e The UDS protocol builds on top of the CAN protocol on OSl layers 5
and 7/

e Communication is performed in a client-server relationship - with the
client being a tester-tool and the server being a vehicle ECU

General overview

[Application] i

 Session | \

: Transport 1 O

~ - ISO-TP

L Network 0

| Datalink | i

) CAN
Physical e

ISO/OSI UDSonCAN

Protocol overview: sessions

At the base of the protocol are sessions and services

A session is a mode of operation that determines the type of diagnostics the ECU
(Electronic Control Unit) will allow. Each session has its own set of permissions and
capabilities. The most common UDS sessions are:

e Default Session (0x01): normal operating mode, limited diag functionality

e Programming Session (0x02): enables reprogramming or flashing the ECU
firmware, allows access to memory regions and advance functions

e Extended Session (0x03): advanced diagnostics, access to tests and
parameter adjustments

Protocol overview: services

Services are standardized commands used to interact with ECUs. Each service is
identified by a unique service identifier (SID), usually a single byte. The structure of
a UDS request typically includes the SID and optional parameters. They allow to:

Read diagnostic informations

Read and write ECU memory

Instruct the ECU to start routines

Perform client authentication and authorization

Protocol overview

UDS request message structure (UDS on CAN)

===
' [
' [
' [
Ve o [
CANID Protocol Service Sub Request Padding
Control Identifier Function Data
Info (PCI) (SID) Byte Parameters " optional

UDS Negative Response example (UDS on CAN)

Ox7EC Ox03 || Ox7F || Ox22 || Ox13 OXAAAAAAAA
CANID Protocol Negative Rejected Negative Padding
Control Response SID Response
Info (PCI) SID Code (NRC)

Attack: Exploiting weak auth algorithm

Attack: Exploiting weak auth algorithm

Execution of the Attack:

Exploiting weak authentication algorithms allows attackers to bypass security, enabling unauthorized
access to diagnostic functions or sensitive vehicle data.

Attack: Exploiting weak auth algorithm

Execution of the Attack:

Exploiting weak authentication algorithms allows attackers to bypass security, enabling unauthorized
access to diagnostic functions or sensitive vehicle data.

Impact on the System:

The attacker analyzes weak cryptographic mechanisms or default keys in the UDS protocol, then crafts
malicious requests to gain control or retrieve confidential information.

Attack: Improper protection of critical services

Attack: Improper protection of critical services

Execution of the Attack:

The attacker exploits insufficient authentication or access control to misuse functions like

ReadDataByAddress to extract sensitive information or WriteDataByAddress to modify critical system
parameters or firmware.

Attack: Improper protection of critical services

Execution of the Attack:

The attacker exploits insufficient authentication or access control to misuse functions like
ReadDataByAddress to extract sensitive information or WriteDataByAddress to modify critical system
parameters or firmware.

Impact on the System:

Improper protection of critical services, such as ReadDataByAddress and WriteDataByAddress, can
allow attackers to access sensitive data or alter firmware, leading to unauthorized control, system
instability, or safety risks.

Challenge time

